Quantum Computing and Blockchain: Facts and Myths
The biggest danger to Blockchain networks from quantum computing is its ability to break traditional encryption [3].
Google sent shockwaves around the internet when it was claimed, had built a quantum computer able to solve formerly impossible mathematical calculations–with some fearing crypto industry could be at risk [7]. Google states that its experiment is the first experimental challenge against the extended Church-Turing thesis — also known as computability thesis — which claims that traditional computers can effectively carry out any “reasonable” model of computation
What is Quantum Computing?
Quantum computing is the area of study focused on developing computer technology based on the principles of quantum theory. The quantum computer, following the laws of quantum physics, would gain enormous processing power through the ability to be in multiple states, and to perform tasks using all possible permutations simultaneously [5].
A Comparison of Classical and Quantum Computing
Classical computing relies, at its ultimate level, on principles expressed by Boolean algebra. Data must be processed in an exclusive binary state at any point in time or bits. While the time that each transistor or capacitor need be either in 0 or 1 before switching states is now measurable in billionths of a second, there is still a ...
Read More on Datafloq
Google sent shockwaves around the internet when it was claimed, had built a quantum computer able to solve formerly impossible mathematical calculations–with some fearing crypto industry could be at risk [7]. Google states that its experiment is the first experimental challenge against the extended Church-Turing thesis — also known as computability thesis — which claims that traditional computers can effectively carry out any “reasonable” model of computation
What is Quantum Computing?
Quantum computing is the area of study focused on developing computer technology based on the principles of quantum theory. The quantum computer, following the laws of quantum physics, would gain enormous processing power through the ability to be in multiple states, and to perform tasks using all possible permutations simultaneously [5].
A Comparison of Classical and Quantum Computing
Classical computing relies, at its ultimate level, on principles expressed by Boolean algebra. Data must be processed in an exclusive binary state at any point in time or bits. While the time that each transistor or capacitor need be either in 0 or 1 before switching states is now measurable in billionths of a second, there is still a ...
Read More on Datafloq
Comments
Post a Comment